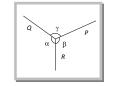

[CET 1998]

[AFMC 1994]


Chapter 1: Vector and relative motion

- 1. P, Q and R are three coplanar forces acting at a point and are in equilibrium. Given P = 1.9318 kg wt, =1sinq 20.9659, the value of R is (in kg wt)
 - (a) 0.9659 (b) 2 (c) 1

(d) 21

2. A body is in equilibrium under the action the action of three coplanar forces P, Q and R as shown in the figure. Select the correct statement

(a)		Q	<i>R</i>	(b) - P =	Q	<i>R</i>
(a)	sina -	$\sin\beta$	sinγ	cosα	$\cos\beta$	cosγ
(c)			R	(d) $\frac{P}{}$	<u>Q</u>	R
(0)	$tan \alpha$	$\tan \beta$	tanγ	$\sin \beta$	sinγ	sinα

3. If a body is in equilibrium under a set of non-collinear forces, then the minimum number of forces has to be [AIIMS 2000]
(a) Four
(b) Three

(c) Two (d) Five

- 4. How many minimum number of non-zero vectors in different planes can be added to give zero resultant
 - (a) 2 (b) 3 (c) 4 (d) 5
- 5. A metal sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The forces acting on the sphere are shown in the second diagram. Which of the following statements is wrong
- (a) $P = W \tan \theta$
- (b) $\vec{T} + \vec{P} + \vec{W} = 0$
- (c) $T^2 = P^2 + W^2$
- (d) T = P + W
- 6. As shown in figure the tension in the horizontal cord is 30 N. The weight W and tension in the string OA in Newton are [DPMT 1992]

string OA in Newton are (a) $30\sqrt{3},30$

- (a) $30\sqrt{3},50$ (b) $30\sqrt{3},60$
- (c) $60\sqrt{3},30$
- (d) None of these

PHYSICS

PROBLEMS ABASED ON RELATIVE

VELOCITY:-

(c) tan θ

7. A 150 m long train is moving to north at a speed of 10 m/s. A parrot flying towards south with a speed of 5 m/s crosses the train. The time taken by the parrot the cross to train would be:

(a) 30 s	(b) 15 s	[CBSE PMT 1992]
(c) 8 s	(d) 10) s

8. A swimmer can swim in still water with speed and the river is flowing with velocity v/2. To cross the river in shortest time, he should swim making angle with the upstream. What is the ratio of the time taken to swim across the shortest time to that is swimming across over shortest distance

(a)
$$\cos \theta$$
 (b) $\sin \theta$

- (d) $\cot \theta$
- 9. The speed of a boat is 5 km/h in still water. It crosses a river of width 1 km along the shortest possible path in 15 minutes. The velocity of the river water is [CBSE PMT 1998]
 - (a) 1 km/h (b) 3 km/h
 - (c) 4 km/h (d) 5 km/h
- 10. A river is flowing from east to west at a speed of 5 m/min. A man on south bank of river, capable of swimming 10m/min in still water, wants to swim across the river in shortest time. He should swim

 (a)Due north
 (BHU 1998)
 - (b)Due north-east
 - (c)Due north-east with double the speed of river (d)None of these
- 11. A person aiming to reach the exactly opposite point on the bank of a stream is swimming with a speed of 0.5 m/s at an angle of 1200 with the direction of flow of water. The speed of water in the stream is [CBSE PMT 1999]
 - (a) 1 m/s (b) 0.5 m/s
 - (c) 0.25 m/s (d) 0.433 m/s

12. A moves with 65 km/h while B is coming back of A with 80 km/h. The relative velocity of B with

[AFMC 2000]								
(b) 60 km/h								
(d) 145 km/h								

13. A man crosses a 320 m wide river perpendicular

ELITE IIT 1

Chapter 1: Vector and relative motion

PHYSICS

ELITE IIT 1

to the current in 4 swim with a speed		n still water he can at of the current,	from the scooterist, with what velocity should the scooterist chase the bus					
then the speed of	the current, i	n m/min is	(a) 50 m/s	(b) 40 m/s				
(a) 30	(b) 40	[Roorkee 1998]	(c) 30 m/s	(d) 20 m/s				
(c) 50	(d) 60		16. A man can swi	m with velocity v relative to water.				
14. A thief is runnin	g away on a s	traight road on a	He has to cross a river of width d flowing with a					
jeep moving with	a speed of 9 r	n/s. A police man	velocity u (u >v). The distance through which he is					
chases him on a n	notor cycle m	oving at a speed of	carried down stream by the river is x. Which of					
10 m/s. If the inst	antaneous sep	paration of jeep	the following sta	tement is correct				
from the motor c	ycle is 100 m,	how long will it		ver in minimum time $\frac{du}{dt}$				
take for the police	emen to catch	the thief	(b) x can not be less th					
(a) 1 second	(b) 19	second		im he has to swim in a direction making				
(c) _{90 second}	(d) 100) second	an angle of $\frac{\pi}{2} + \sin \theta$	$-\frac{v}{u}$ with the direction of the flow				
15. A bus is moving	with a velocit	y 10 m/s on a	(d) x will be max. if he swims in a direction making an angle					
straight road As	conterist wish	es to overtake the	of π () with	h direction of the flow of				

straight road. A scooterist wishes to overtake the bus in 100 s. If the bus is at a distance of 1 km

CA

Answer

01.	02.	03.	04.	05.	06.	07.	08.	09.	10.	11.	12.	13.	14.	15.	16.
С	а	b	С	d	b	d	b	b	а	С	С	а	d	d	a,c

2

ng an angle + sin $\left(\overline{u} \right)$